

ACTIVITY MODELING FOR RISK ASSESSMENT AND EMERGENCY MANAGEMENT APPLICATIONS FOCUSING ON PERI-URBAN REGIONS

Alex Sims

PhD Student (FIRE-DST Theme 1 Project 2) School of Natural and Built Environment, University of South Australia

Research Advisory Forum

24 May 2012

RESEARCH QUESTIONS

Overall Risk

- In Australia nationally rural roads have 15 crashes per 100,000,000 vehicle kilometres and 1.3 per 10,000,000 intersection entries (Austroads 2010)
- What are the numbers for late evacuation?

RESEARCH QUESTIONS

Risk Contribution

 Place the following factors in correct order from least to most risk in late evacuation

Behaviour

Network

Physical

RESEARCH GAP

- Activity model of
 - Normal behaviour
 - Behaviour under threat
- Transport simulation with many crashes
- Understanding of blockages

LITERATURE REVIEW

	Preserve Property	Disregard Property
Preserve Life	1 - Stay and Defend	2 - Early Evacuation
Disregard Life		3 - Late Evacuation

LITERATURE REVIEW

- No COTS Transport Simulation with many crashes
- When modelling behaviour need to consider the "return evacuation" for children and pets

METHODOLOGY

- 1. Understand a single segment
- 2. Work out where the people are
- 3. Combine single segments into a network
- 4. Add the people
- 5. Add the fire
- 6. Observe

Possible results

- a) Move with some delay
- b) Blocked
 - i. Return to A
 - ii. Convert to pedestrian/casualty

SINGLE LINK

Factors to Consider - 1

- Panic
 - Route Choice
 - Leave road
- Winding road
- Wind
 - Trees
 - Powerlines

SINGLE LINK

Factors to Consider - 2

- Heat & Smoke
 - Sight distance
 - Physiological affects
- Fire front
 - Can't cross
- Other people
 - Crashes multiply
- Ordinary risk

DISTRIBUTION OF PEOPLE Data and Outcomes

- Data Sources
 - Census
 - Time use surveys
- Journey to:
 - Work
 - School
 - Shopping
 - Tourism

DISTRIBUTION OF PEOPLE Groups

- It's a group thing
- Influences on behaviour
 - Vehicle Availability
 - Age
 - Experience
- Groups are dynamic

NETWORK

- A network is a group of links
- Route choice
 - Where is a place of safety?
 - Does route choice change?

MODEL

- Put it all together
 - Link to Fire & Smoke model (FIRE-DST)
 - People activity
 - Transport Network
 - Monitoring

SIMULATION OUTPUTS

- Can observe individual outcomes
 - Paths taken
 - Time taken
 - Who incurs the risk?
 - Age
 - Location
 - Socioeconomic
 - Etc?

TIMING

- 2012 Data Collection
- 2013 Single Link/Integration
- 2014 Integration/Calibration

POSSIBLE OUTCOMES

- Guide to risk for
 - Policy makers
 - Community groups
 - Individuals
- Testing of new policies

TSUNAMI

FUTURE WORK

- Focus on risk factors
- Modelling of:
 - Denser areas with congestion
 - Non-bushfires

REFERENCES

- Austroads 2010, Road Safety Engineering Risk Assessment, Part 7: Crash Rates Database.
- Handmer & Tibbits 2005, Is staying at home the safest option during bushfires?
 Historical evidence for an Australian approach, Environmental Hazards 6 (2005) 81-91
- Beringer J. 2000, Community fire safety at the urban/rural interface: The bushfire risk, Fire Safety Journal 35 (2000) 1-23

QUESTIONS

