

Post-wildfire recovery of vegetation and water yield: A case study of the summer 2001/2002 Sydney Basin wildfire.

Jessica Heath^{1,2}, Chris Chafer³, Thomas Bishop¹, Floris Van Ogtrop¹

- ¹ Hydrology and Geo-Information Sciences Laboratory, Faculty of Agriculture and Environment, The University of Sydney, Sydney, NSW, 2006, Australia.
- ² Bushfire CRC, East Melbourne, VIC, 3002, Australia
- ³ Sydney Catchment Authority, Penrith, NSW, 2750, Australia.

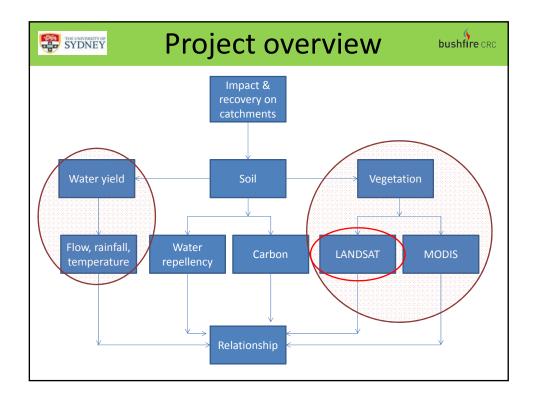
Project overview

Surface water balance equation can be expressed as:

$$\Delta \langle S \rangle = \langle P \rangle - \langle ET \rangle - \langle Q \rangle - \langle R \rangle \tag{1}$$

where $\Delta\langle S\rangle$ is the change in spatially averaged catchment water storage, $\langle P\rangle$ is the spatially averaged precipitation, $\langle ET\rangle$ is the spatially averaged evapotranspiration, $\langle Q\rangle$ is the spatially averaged catchment surface-water runoff, and $\langle R\rangle$ is the spatially averaged catchment recharge.

Project overview



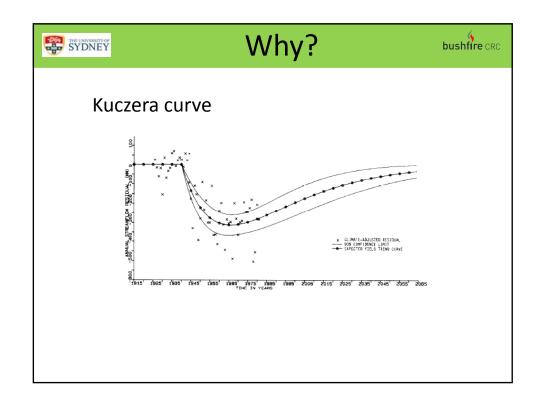
Groundwater discharges are often thought to be small and are difficult to quantify.

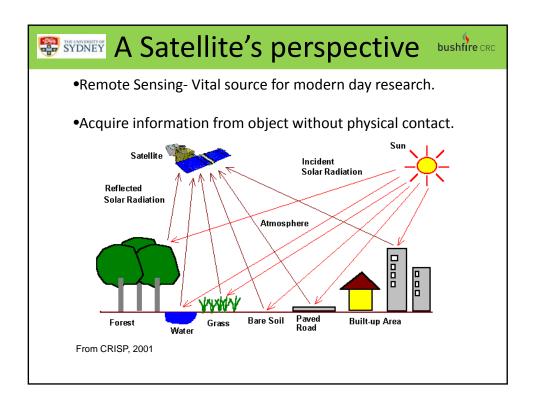
The equation is then simplified as:

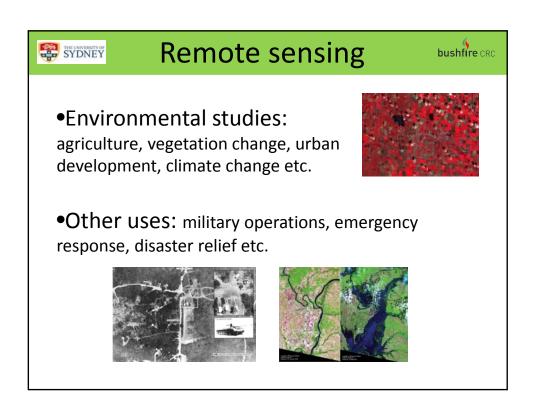
$$Q = \langle P \rangle - \langle ET \rangle - \Delta \langle S \rangle \tag{2}$$

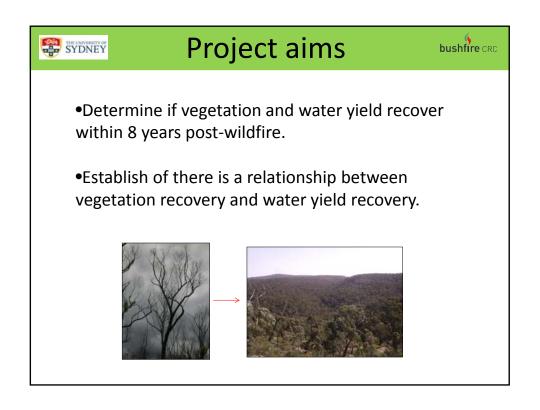
where $\langle Q \rangle$ is the spatially averaged catchment surfacewater runoff, $\langle P \rangle$ is the spatially averaged precipitation, $\langle ET \rangle$ is the spatially averaged evapotranspiration and $\Delta \langle S \rangle$ is the change in spatially averaged catchment water storage.

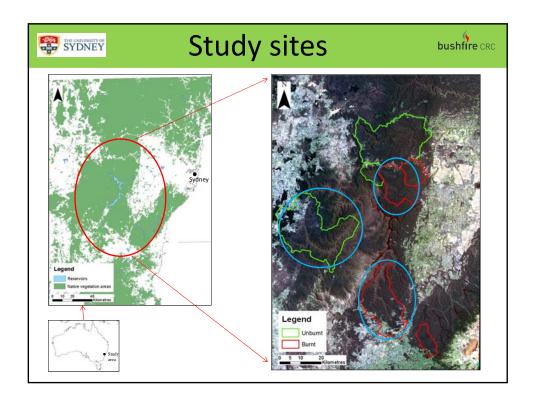
₩ SYDNEY Why?

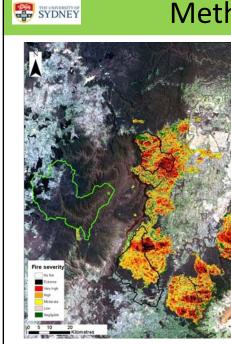



- •Response by vegetation communities
 - •Obligate resprouters vs. seeders






- •Impact on a catchment's hydrology
 - •Initial decline of water yield
 - •Recovery of water yield to pre-wildfire conditions



- •Create fire severity map based of Landsat data (based from Chafer et al. 2004).
- •Determine subcatchments based on location of hydrometric station

THE UNIVERSITY OF SYDNEY

Methods

bushfire CRC

WATER YIELD- processing

- •Obtain hourly water yield and rainfall data, plus daily maximum temperature data from 1991-2010
- •Process data into weekly data.

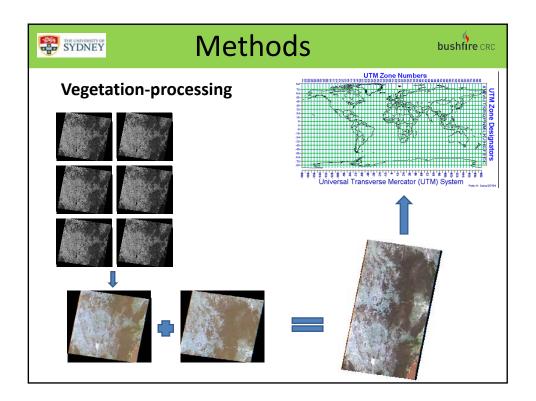
WATER YIELD cont.- model

•A log normal model (Eq. 1) using thin plate splines were used (Wood, 2003). The smoothing parameters were selected using restricted maximum likelihood (REML).

$$\log(y) = \beta_0 + \sum_{i=1}^{n} s_i(X_i)$$
 (3)

where β_0 is the parameter vector, s_i is the i^{th} thin plate smoothing spline, X_i is the i^{th} covariate.

Methods



WATER YIELD cont.

•Goodness-of-fit: Nash-Sutcliffe coefficient (NSE) and modified Nash-Sutcliffe coefficient (mNSE).

E= < 0	E= 0	E= 1
Observed mean is a	Model predictions	Perfect match of
better predictor	are as accurate as	modeled discharge
than the model	the mean of the	to the observed
	observed data	data

- •Change detection: Error plots are the observed datapredicted data. If there is change will resemble the Kuczera curve.
- •Looking at long term recovery so only interested in mean error values.

VEGETATION

- •Top of atmosphere (ToA) correction:
 - 1. Digital number (DNs) values to spectral values (Eq. 2)

$$L = \alpha D_n + \beta \tag{4}$$

where L = spectral radiance values, α is the gain and β is the recalled bias

2. Radiance to ToA reflectance (Eq. 3)

(5)

 $ho_0=\pi*L_0*d^2/E_0*\cos g_z$ where ho_0 = Unitless plantary reflectance, ho_0 = spectral radiance, d = Earth-Sun distance in astronmoical units, ho_0 = mean solar exoatmospheric

irradiances and θ_{7} = solar zenith angle.

VEGETATION- indices (range from -1 to 1)

•Normalized Difference Vegetation Index (NDVI)

$$NDVI = \frac{near\ IR - red}{near\ IR + red}$$

•Corrected Normalized Difference Vegetation Index (NDVIc)

$$NDVI_{c} = \frac{near\ IR - red}{near\ IR + red} * (1 - \frac{mIR - mIR_{\min}}{mIR_{\max} - mIR_{\min}})$$

where mIR refers to the middle-infrared band 5

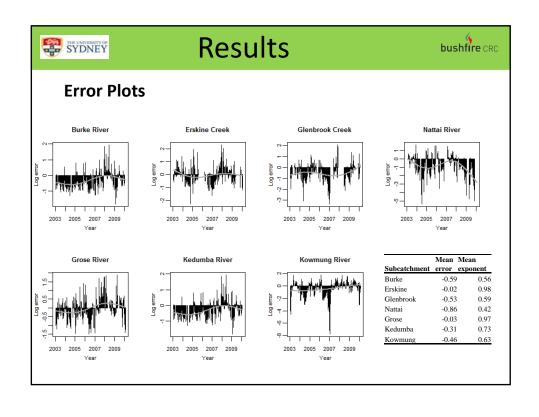
Normalized Burn Ratio

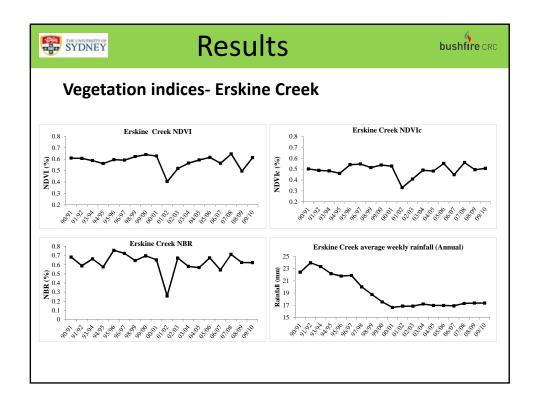
$$NBR = \frac{(NIR - MIR)}{(NIR + MIR)}$$

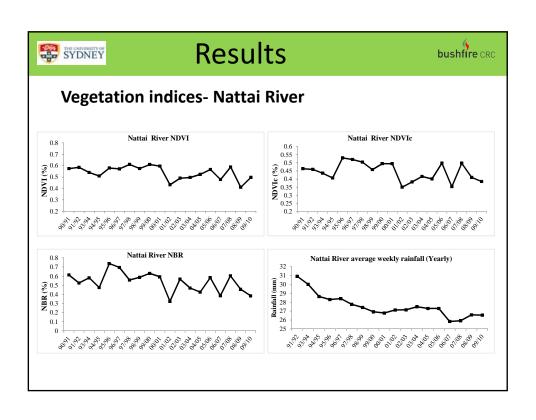
where MIR refers to band 7

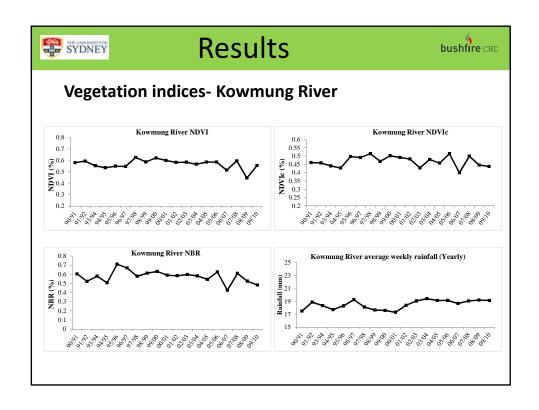
Band	Spectral Ranges (µm)	
1	Blue	0.45 to 0.52
2	Green	0.52 to 0.6
3	Red	0.63 to 0.69
4	Near-IR	0.76 to 0.90
5	Mid-IR1	1.55 to 1.75
6	Thermal-IR	10.4 to 12.5
7	Mid-IR2	2.08 to 2.35

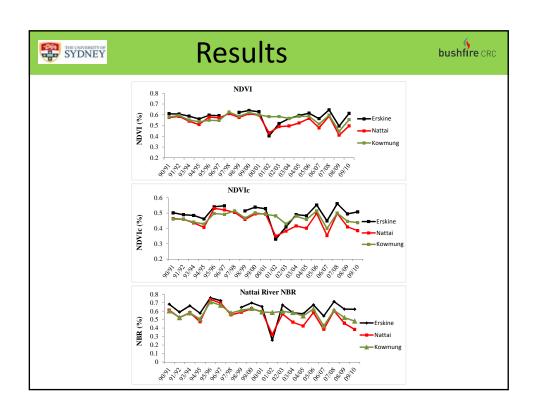



Expected Outcomes




Control catchment:


- 1) Goodness-of-fit values: Extensively higher than burnt catchments post-wildfire if there is a change in water yield.
- 2)Error plots: No pattern in data, should have a flat smooth line
- 3) Vegetation: Vegetation indices should remain higher than burnt catchments during post-wildfire period unless affected by external factors i.e. climate



Discussion

Water yield + vegetation

- •GAM: Limitations i.e. Climate >El Nino post-wildfire until 2007.
- •Kuczera: Vegetation regrowth = decline in water yield-Not in this study!
- •Vegetation shrub layer which accounts for 80% of fuel would have began recovering within months post-wildfire (Chafer et al., 2004).

Discussion

Water yield + vegetation

- •El Nino to La Nina mid-spring 2007 (10 month process).
- •2007-2008 above average rainfall
- •El Nino mid-2009: Australia serious rainfall deficiencies which is obvious in the vegetation recovery graphs = over estimating water yield during this period.

Conclusion

- •No pattern in smooth curves resembling the Kuczera curve.
- •Water yield and vegetation recover within 2-5 years post-wildfire in the outer Sydney Basin.
- •Sydney Basin subcatchments have a faster recovery rate than Melbourne catchments.
- •GAM models and remote sensing can help develop new strategies for wildfire events.
- •Use Moderate Resolution Imaging Spectroradiometer (MODIS) imagery to assess same period.

References

Chafer, C.J., Noonan, M., Macnaught, E., 2004. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires International Journal of Wildland Fire 13, 227-240.

CRISP (2001) What is Remote Sensing?

http://www.crisp.nus.edu.sg/~research/tutorial/intro.htm. Accessed 23rd July, 2012.

Kuczera, G., 1987. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest. Journal of Hydrology, Netherlands 94, 215-236.

THANK YOU!!!