Impact of gamba invasion on fire, fire danger & cost of fire management

Assoc Prof. Samantha Setterfield & Dr Natalie Rossiter-Rachor.

in collaboration with Bushfires NT, BOM, and NRETAS Weed Management Branch

<u>Based on the journal paper at</u> http://dx.plos.org/10.1371/journal.pone.0059144

Overview

- What is gamba grass?
- Where is it?
- How does it alter fuel and fire characteristics?
- What are the resulting impacts on:
 - Tree cover
 - Grassland Fire Danger Index (GFDI)?
 - Cost of fire management

Gamba grass (Andropogon gayanus)

- Vigorous perennial tussock grass (grows up to 4 m)
- Introduced from Africa as a pasture species
- Declared noxious weed in all northern states in 2008
- Declared a WONS in 2012
- Now widely distributed in native savannas
 - Mary River National Park
 - Litchfield National Park
 - Coomalie Shire

Gamba is highly invasive

- Produces lots of seed (70,000 seeds m⁻²)
- Establishes in range of habitats
 - Unburnt/burnt savanna
 - Floodplain margins
- Superior competitor for resources
 - Light, water, nutrients
- Spreads rapidly
 - "Natural" (Wind, water, feral animals)
 - Anthropogenic (road & transport corridors, hay)

Native grass

Gamba grass

Current distribution of gamba grass

Source: Weeds Australia 2013

Current distribution of gamba grass in NT

Source NRETAS 2013

Potential distribution of gamba grass

Source: Weeds Australia 2013

Gamba alters fuel & fire characteristics

- Dense, continuous stands
- Higher biomass
- Grows later into dry season
- Taller fuel (remains upright)
- Higher fire intensity

Gamba increases fuel loads

Gamba increases fire intensity

Photo Credit: Bushfires NT

~ 2000 kW m⁻¹

Up to 48, 000 kW m⁻¹

Dramatic increase in char height

Setterfield et al. (2010) Div & Dist

Higher fire intensity in Early Dry (June) **Photo Credit: Dave Muller** 25th June 2009

Higher fire intensity in Late Dry (Oct) **Photo Credit: Danny Claris** 16th October 2012

Higher fire intensity in Late Dry (Oct) **Photo Credit: Danny Claris** 16th October 2012

.....what are the impacts of higher intensity fires?

Gamba fires impact on:

- Plant & animal biodiversity
- Nitrogen cycling
- Tree cover
- The fire risk to emergency services/ community
- The cost of fire management

Gamba fires impact on:

- Plant & animal biodiversity
- Nitrogen cycling
- Tree cover
- The fire risk to emergency services/ community
- The cost of fire management

The alien grass-fire cycle

(sensu D'Antonio and Vitousek 1992)

Tree cover

Tree cover under gamba canopy (one plot)

Tree cover under gamba canopy (one plot) 2010

up to 80% reduction in tree cover between 1990 & 2010

(Setterfield et al. in prep)

Tree cover under gamba (1979-2010)

Tree cover under gamba (1979-2010)

Tree decline- Litchfield National Park

Tree decline- Litchfield National Park

Documenting changes to fuel loads, fire behaviour & tree cover

The Grassland Fire Danger Index (GFDI)

- McArthur Mark 4 Grassland Fire Danger Index
- Indicator of potential difficulty in controlling a fire, should a fire start on that particular day
- Used for fire weather warnings & fire bans
- Fuel characteristics
 - fuel quantity (t ha⁻¹)
 - fuel curing (0-100%) (dryness of vegetation)
- Weather characteristics
 - temperature (°C)
 - wind speed (km hr⁻¹)
 - relative humidity (%)
- ➤ Gives a FDI value (0-100+)

Fire Danger Rating Categories

The Grassland Fire Danger Index (GFDI)

- McArthur Mark 4 Grassland Fire Danger Index
- Indicator of potential difficulty in controlling a fire, should a fire start on that particular day
- Used for fire weather warnings & fire bans
- Fuel characteristics
 - fuel quantity (t ha⁻¹)
 - fuel curing (0-100%) (dryness of vegetation)
- Weather characteristics
 - temperature (°C)
 - wind speed (km hr⁻¹)
 - relative humidity (%)
- ➤ Gives a FDI value (0-100+)

Categories

Study Area: Coomalie Shire

Assessment of Landscape fuel loads

Methods

- Aerial survey 2008/2009 (Coomalie/Litchfield)
- Systematic transects, 2 observers in helicopter
- Gamba cover assessed every 200m
- Cover scored using NT Weeds Branch cover classes
- Ground truthing completed
- Destructive fuel load sampling

The gamba grass aerial survey

Gamba grass cover-2008/09

(Setterfield et al. 2013)

Batchelor 2008

GFDI per fuel load- Batchelor 2008

Large increase in fire management costs (2002 vs 2010)

- Vernon Region
- Stand-by equip. (for fire ban days)
 - from \$375 to \$11,000/day

Setterfield et al. 2013

Large increase in fire management costs (2002 vs 2010)

- Vernon Region
- Stand-by equip. (for fire ban days)
 - from \$375 to \$11,000/day
- Wildfire Management costs
 - ↑ from \$225k to \$860k/yr

* Data are in 2010 dollars & inc GST

Setterfield et al. 2013

Comparison of fire management costs per wildfire event*

	Native	Gamba
Rum jungle	\$750	\$20,171
Tortilla	\$375	\$23, 687
Batchelor	\$750	\$32, 672
Darwin River	\$1,500	\$27,209

^{*} Cost of staff & equipment

Setterfield et al. 2013

Camp Creek Wildfire -2012

Fire details

- Date 16th October 2012
- Burnt 5580 ha
- Burnt for 9 hours (+ 2 days mop up)

Staff

- 6 staff members (34 hours)
- 6 volunteers (44 hours)

Equipment

- 2 helicopters
- 2 planes
- 1 water tanker
- 1 grader
- 9 grass fire units
- 12 other vehicles (personal)
- ➤ Total equipment cost \$15,561

Large increase in fire management costs (Vernon 2002 vs 2010)

Vernon region

Total fire management costs

↑\$275k to **\$1.3**million /yr

* Data are in 2010 dollars & inc GST

Setterfield et al. 2013

Implications

- Need for urgent management
- Only in early stages of invasion
- Must respond quickly to new incursions
- Need to prevent further spread & increases in density

Tree cover

- Dramatic [↓] in tree cover (grass-fire cycle)
- Savanna woodlands → grasslands
- Gamba grass is a true 'ecosystem transformer' (Sensu Richardson et al 2001)
- Serious threat to carbon abatement projects

Implications

- Fire Danger Index
- fire Danger Risk emergency services
- fire Danger Risk to community
- How should Govt. policy respond to this?
 (Warnings? The community? Tourists?)
- The Fire Danger risk will continue to 1 as gamba density 1 and spread continue
- Cost of fire management
- More fire bans each fire season
- − ↑ cost fire management
- The cost will continue to 1 as gamba density 1 and spread continue
- Need benefit:cost of gamba control

Collaborators

- Charles Darwin University
 - S. Setterfield, M. Douglas, A. Petty
- NRETAS- Weeds Branch
 - K. Ferdinands, P. Barrow, A. Hendry
- Bushfires NT
 - S. Whatley, J. Whatley, C. Platell, S. Davies, A. Turner, S. Sutton
- Bureau of Meteorology
 - I. Shepherd, W. Lynch
- Funding: Australian Weeds Research Centre, CDU, CERF Significant Project, LWA, NHT

Video of the 2012 Camp Creek Fire **Photo Credit: Danny Claris** 16th October 2012